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Fig. 1. Every material in this rendered scene is a procedural material that was automatically created by MATch from a single flash photograph captured with
a cellphone. All the target materials are visualized underneath. The created materials can be found in Figure 6 and Supplementary Material Figure S2.

We present MATch, a method to automatically convert photographs of ma-
terial samples into production-grade procedural material models. At the
core of MATch is a new library DiffMat that provides differentiable build-
ing blocks for constructing procedural materials, and automatic translation
of large-scale procedural models, with hundreds to thousands of node pa-
rameters, into differentiable node graphs. Combining these translated node
graphs with a rendering layer yields an end-to-end differentiable pipeline
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that maps node graph parameters to rendered images. This facilitates the
use of gradient-based optimization to estimate the parameters such that
the resulting material, when rendered, matches the target image appear-
ance, as quantified by a style transfer loss. In addition, we propose a deep
neural feature-based graph selection and parameter initialization method
that efficiently scales to a large number of procedural graphs. We evaluate
our method on both rendered synthetic materials and real materials cap-
tured as flash photographs. We demonstrate that MATch can reconstruct
more accurate, general, and complex procedural materials compared to the
state-of-the-art. Moreover, by producing a procedural output, we unlock
capabilities such as constructing arbitrary-resolution material maps and
parametrically editing the material appearance.

CCS Concepts: « Computing methodologies — Rendering.
Additional Key Words and Phrases: procedural materials, material acquisition

ACM Reference Format:
Liang Shi, Beichen Li, Milo§ Hasan, Kalyan Sunkavalli, Tamy Boubekeur,
Radomir Mech, and Wojciech Matusik. 2020. MATch: Differentiable Material

ACM Trans. Graph., Vol. 39, No. 6, Article 196. Publication date: December 2020.


https://doi.org/10.1145/3414685.3417781

196:2 « Shi, L. etal

Graphs for Procedural Material Capture. ACM Trans. Graph. 39, 6, Article 196
(December 2020), 15 pages. https://doi.org/10.1145/3414685.3417781

1 INTRODUCTION

Procedural materials have become very popular in the computer
graphics industry (movies, video games, architecture, and prod-
uct visualization). These materials are often represented as node
graphs, where each node may denote simple image processing op-
erations, but the collective graph can produce material maps (like
albedo, normals, roughness, etc.) for highly complex, real-world
spatially-varying BRDFs (SVBRDFs). In contrast to SVBRDFs that
are explicitly defined in terms of per-pixel material parameter maps,
such procedural material models have a number of advantages: they
are compact in memory, resolution-independent, efficient to eval-
uated for interactive feedback during the material design process,
and can be easily edited to generate material variations. However,
such procedural materials are manually designed by expert artists
using professional tools—a time-consuming process that is often
well beyond the capabilities of novice users.

The goal of our work is to enable a light-weight material acquisi-
tion method that can automatically create procedural materials from
captured images. While this would be extremely challenging to do
from scratch, there already exist datasets of high-quality procedural
materials' that can serve as a starting point. Therefore, we present
MATch (short for MATerial Match), a method to convert a target
RGB image (for example, but not limited to, a flash photograph
taken with a cellphone) into a procedural material by identifying
an appropriate procedural model from a model library, and esti-
mating the node parameters of that model to best match the target
appearance. In particular, we focus on estimating the continuous
node parameters in the filter nodes of the procedural model, while
keeping the discrete parameters and generator nodes fixed (these
typically govern the types and random seeds of base patterns and
noises). As we show in this paper—and illustrate in Figure 1 where
every single material has been automatically captured from a single
cellphone flash photograph—this is already sufficient to reproduce
a wide variety of real-world materials.

MATch is an optimization-based method where we treat the node
graph as analogous to a neural network whose parameters can be
estimated; in our case the parameters are not network weights, but
the various node parameters in the graph. This approach requires a
key element: a differentiable version of a given material graph that
can be evaluated forward and backward (for gradient computation).
We accomplish this by introducing a procedural material modeling
library DiffMat to translate procedural material node graphs into
differentiable programs. We demonstrate that DiffMat can handle
production-grade procedural material graphs (with hundreds of
nodes and thousands of parameters) representing complex spatially-
varying BRDFs.

We combine the translated differentiable material graphs with a
differentiable rendering layer to create an end-to-end differentiable
graph parameter-to-image pipeline that enables parameter estima-
tion through gradient descent. Inspired by previous work on texture
synthesis and image style transfer [Gatys et al. 2015; Gatys et al.
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2016], we use losses based on the statistics of deep neural features
of the VGG network [Simonyan and Zisserman 2015] to compare
the rendered image to a target example [Aittala et al. 2016; Guo et al.
2019]. Optimizing the graph parameters using these losses allows us
to reproduce the target image appearance without requiring perfect
pixel alignment between these images.

We apply our graph translation scheme to publicly available
procedural material libraries! to create a set of 88 differentiable
graphs. Given an example RGB image, we propose an efficient graph
selection scheme to first identify the most appropriate graphs out of
this set. We use a pre-trained VGG network to extract deep features
from the image and use graph-specific shallow networks to predict
parameters from these extracted features. These network-predicted
parameters are coarse but sufficient to select the top-3 graphs that
best match the input image appearance. Finally, we optimize for the
parameters of the selected graphs using our differentiable pipeline.

Together, our three contributions—(i) An efficient graph selec-
tion and node parameter initialization network, (ii) an optimization
scheme and loss function that recovers accurate parameter values
from captured images, and (iii) a procedural material modeling li-
brary DiffMat that can automatically translate procedural graphs
into differentiable node graphs—enable single-shot high-quality pro-
cedural material capture. Compared to the state-of-the-art inverse
procedural material design work of Hu et al. [2019] who also select
a procedural material from a library and estimate its parameter
to match an input image (albeit via direct network prediction as
against our optimization-based approach), we recover additional
BRDF parameters that define complex, real-world materials (such
as roughness and metallicity), estimate a significantly larger set of
node parameters for production-scale procedural models and demon-
strate more accurate, photorealistic reconstructions. Unlike recent
work on single-image material capture that reconstructs per-pixel
spatially-varying BRDFs [Aittala et al. 2016, 2015; Deschaintre et al.
2018, 2020; Li et al. 2018b], which are limited in resolution and sur-
face coverage or require an initialization from a resolution-limited
method [Gao et al. 2019], our method converts images into pro-
cedural materials that are higher-quality, resolution-independent,
editable, support seamless tiling and have small storage require-
ments. We illustrate this in Figure 1 by constructing procedural
materials from a wide range of real-world materials captured using
a hand-held cellphone in unconstrained conditions.

2 RELATED WORK

Material Capture. Capturing the parameters of spatially-varying
BRDFs is a classic problem in computer graphics; please see Guarn-
era et al. [2016] for a recent survey of this body of work. While
one could scan the entire 6-dimensional SVBRDF using a spher-
ical gantry, this is expensive and rarely necessary. The goal of
many previous methods is to reduce the measurement effort and
output parameter maps for diffuse color, normal, specular rough-
ness/glossiness, and specular albedo. Among the first solutions that
scanned such maps using a linear light was Gardner et al. [2003].
More recently, Aittala et al. [2013] used Fourier patterns projected
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Fig. 2. An exemplar leather material graph created using Substance Designer. The graph starts with several generator nodes that provide initial patterns
for subsequent filter nodes to manipulate. The graph is internally partitioned into subgraphs that create different visual attributes of the leather pattern. It

outputs four material maps that define the parameters of an SVBRDF.

onto an LCD screen in combination with a general optimization al-
gorithm to recover per-pixel SVBRDF parameters, but their number
of measurements was still quite high (hundreds).

Aittala et al. later reduced the number of measurements required
to two photos [2015] and later a single photo [2016], under the
assumption of stationarity (perceptual uniformity) of the output
textures. A key component of the latter work was a texture de-
scriptor, inspired by work on texture synthesis and style transfer
work [Gatys et al. 2015; Gatys et al. 2016], and based on feature
maps of the VGG network [Simonyan and Zisserman 2015]. We also
use this approach with some modifications, both in our optimization
and in training predictor networks.

More recently, the work of Li et al. [2018b] and Deschaintre et
al. [2018] introduced a direct end-to-end prediction approach using
convolutional neural networks, mapping single-image measure-
ments to material parameter maps. These approaches have also
been extended to handle multiple input images, either via pooling
of features [Deschaintre et al. 2019] or inverse rendering-based op-
timization in an auto-encoder latent space [Gao et al. 2019]. For
large-scale materials, Deschaintre et al. [2020] fine-tuned the net-
work on close-up flash photographs of the test sample to achieve
better generalization for the entire material. While these results can
be impressive, the reconstruction quality varies with the input, often
showing blurring or loss of quality for novel views or light posi-
tions. Moreover, the resulting maps have a low resolution (typically
256 X 256), are not tile-able nor easily editable afterwards. For these
reasons, procedural outputs have significant advantages. In fact,
using a procedural material model can be thought of as applying a
“prior” to the underconstrained material capture problem; this has
a regularizing effect that, in addition to the other advantages of a
procedural model, also leads to higher-quality results.

Procedural noise by example. Several previous methods produce
noise patterns that can be controlled by example images. Galerne
et al. [2012] produce noise textures with specified power spectra
based on Gabor noise. The parameters controlling the noise charac-
teristics can be estimated from examples. More recently, Galerne

et al. [2017] have introduced texton noise, a related approach of
higher performance, while Heitz and Neyret [2018] developed a fast
histogram blending approach to produce non-repeating noise-like
textures from small exemplars. While these approaches are related
to our work, as they are also driving a procedural model by (real
or synthetic) example images, they are limited to relatively simple
stationary noise patterns. On the other hand, they have advantages
such as speed and small memory footprint.

Inverse Procedural Material Modeling. Hu et al. [2019] recently
introduced a method for inverse procedural material modeling that,
like us, given an input RGB image, selects a procedural material
graph from a library, and estimates graph parameters to best match
the given image. However, unlike our optimization-based approach,
they train neural networks to directly predict the parameters from
input images. In their work, they constrain themselves to a Lam-
bertian BRDF model (predicting only diffuse albedo and surface
normals) and predict only a subset of the graph parameters (the
“exposed” parameters of the graph). Moreover, these network pre-
dictions can be coarse, leading to apparent differences between the
input image and the predicted graph result. They propose using a
post-process style transfer step to better match the results. Unfortu-
nately, this is a non-parametric step that diminishes the advantages
of procedural representation. Finally, their work requires a separate
deep parameter prediction network for every single graph in their
library, leading to a substantial memory footprint. On the other
hand, our pipeline is fully differentiable and refines the prediction
by iterative optimization. This allows us to optimize for all node
parameters of a graph and support non-Lambertian BRDF models,
which leads to significantly more accurate material reconstructions.
Finally, our network selection and parameter prediction use deep
features from a pretrained network and only train shallow fully-
connected networks per graph, making it much more compact. We
believe our work is a major evolution of their framework, with
higher flexibility and power.

The recent work by Guo et al. [2019] also addresses parameter
estimation for procedural material models. Their focus is more
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on a Hamiltonian Monte Carlo sampling approach in a Bayesian
framework. They also explore style transfer losses based on the
Gram matrices of VGG features. However, their procedural materials
are small hand-written pieces of code, and their approach does not
utilize network parameter prediction nor automatic material choice.
In contrast, we substantially expand the set of materials to closely
match the capabilities of production-scale systems, and scale to
many more estimated parameters (hundreds), while also combining
optimization with neural network prediction.

3 PROCEDURAL MATERIALS: OVERVIEW AND
DIFFERENTIABILITY

Procedural material node graphs are directed acyclic graphs of
largely two types of nodes: generators and filters. Generator nodes
create spatial textures from scratch based on user-specific param-
eters, and include both noise generators (like Perlin noise) and
structured pattern generators. Filter nodes manipulate input tex-
tures using operations ranging from pixel value manipulations (like
color or contrast edits) to image processing (like filtering, warping,
blending, etc.); these nodes are parameterized by the control param-
eters of the functions they implement (for example, kernel size for
a box filter or opacity for a blending node). The connectivity of the
graph defines a sequence of operations that start with 2D scalar or
vector maps (usually created by generator or data store nodes) and
manipulate them (usually operations defined by the filter nodes)
to finally output a set of materials maps. In this work, we focus on
four material maps—albedo (or base color), normals, roughness, and
metallicity—that specify the parameters of the simplified Disney
BRDF model [Burley 2012] that has become the de-facto standard
in the real-time and offline rendering industry.

Procedural materials have several desirable properties. They are
often resolution-independent—changing the resolution of the gen-
erator outputs changes the final texture map resolution. Editing
the various node parameters generates different material variations.
Procedural design-based tools also enable artists to hierarchically
design materials. For example, an artist can construct a graph that
produces a specific material appearance and embed into a larger
graph to generate more complex materials. Thus, while the basic
nodes of a procedural material design tool might be simple opera-
tions, they can be combined to construct significantly more complex
nodes or sub-graphs that can be reused in many material designs.

Figure 2 shows an example leather procedural material graph.
This graph has 43 filter nodes and 127 node parameters with fairly
complex connectivity that allows it to produce a wide range of
photorealistic leather material appearances. Typical production pro-
cedural materials are even more complex than this example.

3.1 Differentiability of Node Graphs

Recent work on learning-based inverse graphics has found that
combining neural networks with graphics models can lead to more
interpretable, and in many cases, more accurate results [Deschaintre
et al. 2018; Hu et al. 2018; Li et al. 2018b; Tewari et al. 2017]. How-
ever, this requires that the graphics model itself be differentiable
to allow for training via back-propagation. This has prompted the
development of differentiable libraries for computer vision [Riba
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et al. 2020], rendering [Hiroharu et al. 2018; Li et al. 2018a; Loper and
Black 2014; Nimier-David et al. 2019], geometry processing [Fey and
Lenssen 2019] and spatially sparse computing [Hu et al. 2020]. Simi-
larly, we wish to explicitly use procedural node graphs as the output
of material capture as they provide a compact and interpretable
material representation. This is currently not possible because there
exist no tools to efficiently evaluate procedural materials (forward
and especially backward) in an optimization framework.

Our insight is that typical procedural material filter nodes consist
of image processing operations that are closely analogous to opera-
tions common in convolutional neural networks (CNNs). With very
few exceptions, filter nodes either act as convolutions (blurs, edge
detectors, etc.) or as per-pixel operations (curves, blends, thresholds)
to each pixel of the input map(s) separately. This is closely related
to the typical components of CNNs: convolutions and point-wise
operations (activation functions such as ReLU, sigmoids, etc.). This
leads to our insight that the filter nodes in a production procedural
material system can, in fact, be fully translated to a modern machine
learning framework, and thus being fully differentiable.

On the other hand, the generator nodes are not always express-
ible in this way. However, in this work, we choose to not optimize
generator node parameters and focus only on estimating the filter
node parameters. The reason is that changing generator node pa-
rameters tends to produce different instances of the same pattern
(for example, different instances of the same kind of noise); that
is, the parameters act mostly as random seeds. We consider these
variations to be different instances of the same material (for exam-
ple, corresponding to different pieces of the same leather material).
Since our goal is to reproduce the visual appearance of the target
image and not the exact pixel values (which would be extremely
challenging if not impossible), we find that optimization of genera-
tor parameters is not typically necessary. In contrast, changing the
filter node parameters, often fundamentally changes the material
appearance (for example, from matte brown leather to glossy red
leather).

Based on these observations, we implement a procedural material
modeling library DiffMat consists of differentiable atomic (base-
level) filter nodes and compound (high-level) filter nodes based on
the atomic set. DiffMat also integrates an automatic graph translator
that translates complex procedural material graphs into differen-
tiable graphs. In Sec. 4, we describe how we use these translated
differentiable graphs to produce high-quality materials from input
images. In Sec. 5, we discuss the implementation of our differentiable
material graph library.

4 MATERIAL CAPTURE WITH PROCEDURAL GRAPHS

Given a library of differentiable graphs, we follow a two-step process
to recover a procedural material from a target photograph. First,
we identify the most relevant graphs for the input photograph.
We train networks to, given an image, directly predict the node
parameters of each graph. We process the input photograph with
these parameter prediction networks, evaluate the error between
images rendered with these predictions and the input image, and
pick the top-3 graphs with the lowest errors. Second, we use an
optimization-based method to fit the parameters of each of these
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Fig. 3. Overview of MATch’s fully differentiable procedural material design pipeline. Given an input target image (potentially a flash photograph captured
using a cellphone), we compute an input texture descriptor (flattened Gram matrix) using a pre-trained VGG network. For each procedural material in
our library, we train a parameter prediction network by appending fully connected layers to this texture descriptor. We use these models to predict node
parameters of the target image for every material graph, and generate the corresponding SVBRDFs using the differentiable material graphs translated by
DiffMat. We render images from these SVBRDFs, compute their corresponding texture descriptors and select the top-3 material graphs with the lowest ¢;
texture descriptor difference with respect to the input. Finally, we refine the previously predicted node parameters using a gradient-based optimization with
our differential node graphs to improve the match with the target image. The material graph (along with the refined node parameters) that produces the
closest matched result is output as the final result. Here, we visualize this pipeline with a real, captured wood material sample.

graphs to the target image. Our entire pipeline is illustrated in
Figure 3. We now describe this process in detail, starting with our
parameter optimization method.

4.1 Image-based Parameter Optimization

Given a specific translated graph G, our goal is to estimate node
parameters that will produce a spatially-varying BRDF whose ren-
dered appearance will reproduce a target image, I*. In particular,
we are interested in the material parameter vector 0 of length k, a
concatenation of all k optimizable parameters of the node graph G.

We define the parameter map evaluation operator M that encom-
passes the evaluation of G. Given 0 as input, it produces parameter
maps of a simple BRDF model combining a microfacet and diffuse
term: albedo @, normal vector n, roughness r and metallicity m (the
latter is a spatially-varying weight blending between a dielectric
and metallic interpretation of the BRDF). Therefore,

(a,n,r,m) = M(0). (1)

As mentioned in Sec. 3, we do not optimize over generator node
parameters (typically random noise seeds) z. Instead, we precompute
the generator outputs and keep them fixed in our estimation, i.e.,
we optimize M(0|z). In the following, we skip z for brevity.

The rendering operator R takes the generated maps and com-
putes a rendered image under known illumination. We assume a
single target image captured by centered co-located point light and

camera (simulating a cellphone camera with flash), though exten-
sions to other configurations, including multiple lights or views, is
straightforward. The predicted synthetic image can be written as:

I = R(M(0)) = R(a,n,r,m). (2)

Note that both operators M and R are differentiable; this allows
for gradient computation by backpropagating through the entire
expression R(M(0)). Differentiable rendering operators have also
been previously used for material capture, albeit with per-pixel
SVBRDF representations [Deschaintre et al. 2018; Li et al. 2018b].

Optimizing for @ requires us to define a loss function between
the rendered image, I and target image, I'*. Such a loss cannot rely
on pixel-perfect alignment of texture features because the spatial
patterns between the two images are unlikely to match exactly. We
use the popular style loss function that was proposed by Gatys et
al. [2015; 2016] for image style transfer, and has been used by many
previous methods, including material capture [Aittala et al. 2016;
Guo et al. 2019]. This loss function can be written as:

Lg = |[Te(I) = Tg(I)|h, ®)
where T is a Gatys texture descriptor defined by the concatenation
of the Gram matrices of the five feature maps before each pooling
layer of the VGG [Simonyan and Zisserman 2015] network.

We compute the Gram matrix using the VGG-19 network without
batch normalization, provided by the torchvision library. We also
replace the max-pooling by the average pooling, as suggested by
Gatys et al. We normalize images by the mean/variance for ImageNet
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Fig. 4. Rendered images of 88 automatically translated procedural material graphs, marked with row and column index. All images are rendered from the
maps produced by DiffMat. The image resolution is 512 X 512 pixels. Readers are encouraged to zoom in to examine image details.

data before feeding them to the VGG network. We compute the Gram
matrix descriptors for images at multiple resolutions (specifically
resolutions of 512, 256, and 128); this improves the perceptual match
over multiple scales.

We use Adam optimizer [Kingma and Ba 2014] with a learning
rate of 5e-4 to optimize the Gram matrix loss. Because Eqn. 2 is fully
differentiable, we can backpropagate through the rendering and
the whole material graph to update the values of 0 directly. This
is in contrast to previous work that used the style transfer loss to
optimize for material maps/images [Aittala et al. 2016].

4.2 Network-based Graph Selection and Initialization

The choice of the graph used to match a target image affects the
quality of reproduction. Yet, when a large set of material graphs
is given, manually choosing the appropriate graph is non-trivial;
this is especially so, because as shown in Fig. 6, production-grade
procedural graphs are often “over-parameterized” and can represent
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a wide range of material appearance beyond their semantic class.
Therefore, we propose an automatic graph selection method. This
method first directly predicts the parameters of each graph for the
target image and uses this prediction to select candidate graphs.
These predictions can also be used as initializations to the optimiza-
tion, accelerating convergence, and leading to a better solution for
difficult input targets.

Similar to Hu et al. [2019], we predict the material parameter
vector using a neural network that takes the target image I* and
returns an estimate of . Hu et al. train a parameter prediction
network, based on the AlexNet [Krizhevsky et al. 2012] backbone,
for every procedural graph in their dataset. This incurs a significant
effort to train models for each material completely from scratch and
has a large storage footprint.

Instead of training individual deep networks end-to-end, we ex-
tract image features using a pretrained VGG network and only train
multi-layer perceptrons with three fully connected layers for each



procedural material. As shown in Figure 3, we construct the same
Gram matrix descriptor Tg as above, which (when flattened) pro-
duces a vector of length I. We pass this feature through three fully
connected layers of size I X 3k, 3k X 3k and 3k X k, with a ReLU unit
in between the layers, where k is the number of graph parameters.
A final sigmoid produces estimates in the range [0, 1], which are
then remapped to each parameter’s actual range. Note that because
the length of T is invariant to the input image resolution, the same
architecture can be applied to varying input resolutions. This ap-
proach combines the advantages of a powerful feature extractor
with the small compute and memory requirements of training small
per-graph networks.

We train the fully connected layer weights with synthetic data
generated at training time; thus no dataset storage nor I/O cost is in-
curred. For each iteration, we randomly generate a ground truth ma-
terial vector 6" and evaluate the corresponding maps a*, n*, r*, m*
(Eqn. 1) and the ground truth synthetic image I* (Eqn. 2). We then
pass I through the (fixed) Gram matrix descriptor T and the (train-
able) fully connected layers, resulting in an estimated parameter
vector 6. Because of our fully differentiable pipeline, we can gen-
erate the material maps and rendered images for this parameter
vector, resulting in predicted maps a, n, r, m and image I.

We train the weights of the fully connected layers with a weighted
combination of a parameter loss and style transfer loss (Eqn. 3):

Lnet = /19Lg + AgLG- (4)

The parameter loss Lg is defined as the ¢; difference between mate-
rial parameter vectors:

Lo =16-06". ®)

The style transfer loss serves as an image-based regularizer and
teaches the network how the predicted parameters influence the
visual appearance of the output material. We note that this term
is not available to Hu et al. [2019] due to their non-differentiable
material graph. We have also experimented with a per-pixel £ loss
on the images and maps, but found the predicted parameters tend
to produce blurrier maps.

We use Adam optimizer with a learning rate of le-4 and a time-
based learning decay rate of 0.97 to train the network. We set 19 =
1.0 and 44 = 0.0 for the first 1000 iterations, and then update
Ag = 0.05 for the rest of training. We adopt this approach as we find
the regularization of the style transfer loss is more effective when
the estimated material appearance becomes reasonably close to the
target. The number of required iterations varies depending on the
complexity of the material graph, but we found 10000 iterations
with a batch size of 5 is generally sufficient for most of the material
graphs we tried. As we show in Figure 5, combining a shared high-
quality VGG feature extractor with a small number of per-material
layers yields high accuracy prediction at lower training footprints.

Given a user-input image, we extract its texture descriptor feature
and feed it to the parameter prediction networks for every graph.
The predicted parameters are then fed to their material graphs and
rendered as images. We select the top-3 graphs whose renderings
have the lowest error in the Gatys texture descriptors with respect
to the input image. Finally, we optimize all these graphs (Sec. 4.1)
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to match the target image—starting from the predicted parameter
as initialization—and keep the result with the lowest error.

While our graph selection and initialization approach has simi-
larities to Hu et al. [2019], it also has several advantages. First, our
graph selection and parameter prediction reuse the same network,
whereas Hu et al. uses pre-trained VGG-19 and clustering for graph
selection, and individual deep networks for parameter prediction.
Second, when a new material graph is added to the material graph
set, Hu et al. would require re-running the clustering with all exist-
ing material graphs; our approach only operates on the new material
and does not require re-computing any existing networks. Finally,
we select the material graph from the entire pool of materials, while
Hu et al. only select from the graphs made for the matched materials.
As we show later, selecting from all materials is beneficial, allowing
us to use graphs intended for very different materials to successfully
reproduce the input image.

5 DIFFMAT: A DIFFERENTIABLE PROCEDURAL
MATERIAL LIBRARY

DiffMat is a PyTorch-based library whose goal is to support the
functionality and expressiveness of production-grade procedural
modeling tools while allowing for easy integration with deep learn-
ing tools. To this end, we use Substance Designer? as a reference
and build DiffMat to provide differentiable node routines that can
match it with per-pixel accuracy. We do this for two reasons: first,
Substance Designer is a professional material authoring tool used
widely in the graphics industry and it shares the same design pattern
with other procedural material authoring tools. Thus, by matching
its functionality, our framework can be integrated into real-world
procedural material design workflows. Second, there exist large
public libraries of high-quality artist-designed Substance Designer
material graphs, that we leverage in our material capture framework.
That said, our implementation is independent of Substance Designer,
and can be adapted to match the capabilities of other node graph
authoring applications. DiffMat will be released for non-commercial
academic research use.

5.1 DiffMat Design Overview

Given the similarity between a material node graph—that sequen-
tially processes inputs using filter nodes—and a neural network, we

follow the general design of PyTorch in DiffMat’s API design. Specifi-
cally, DiffMat defines function routines (similar to torch.nn.functional)
for stateless evaluation of node operations, and wrapper classes as

their optimizable equivalent (similar to torch.nn), whose internal

attributes represent node parameters that can be optimized.

We consider continuous parameters (e.g., opacity in the blend
node) as optimizable parameters and discrete parameters (e.g., num-
ber of tiles along the row in the tile generator node) as non-optimizable
parameters. The wrapper class holds a trainable parameter list and
initial values for continuous parameters. Calling the wrapper class
with required input images and discrete parameters will evaluate
its functional counterpart. Because different continuous parame-
ters have different ranges, we store them in the wrapper class as
trainable parameters with a range of [0, 1] along with non-trainable,

Zhttps://www.substance3d.com/products/substance- designer/
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node-specific minimum/maximum parameters that are used to map
the parameters to their final values. To prevent the optimization
from driving a trainable parameter out of its domain, the wrap-
per class applies clamping internally before calling the forward
function. Implementing the nodes in PyTorch gives us the gradient
computation for free by using PyTorch’s auto-differentiation.

DiffMat defines a base class DiffMatGraphModule for all optimiz-
able graphs to inherit. A child class derived from DiffMatGraph-
Module calls its parent’s initialization function to initialize all node
classes used in the current graph, and then defines the actual graph
structure in its own forward function. The base class also collects all
derived nodes’ parameters as its own parameter attributes to enable
convenient graph-level optimization and provides helper functions
such as trained variable export.

5.2 Generator vs. Filter Nodes

As mentioned before, Substance Designer node graphs usually con-
sist of generator nodes, that produce texture patterns from scratch,
and filter nodes, that manipulate these generated textures to create
the final material maps. Instead of including the generator nodes
in the differentiable material graph, we precompute their outputs
using the Substance Designer Automation Toolkit [Adobe 2019] by
randomly sampling the node parameters and save these textures as
inputs for the rest of the graph. Generator nodes can have scale and
offset parameters and we achieve the same effects with an affine
transformation filter node. While this simplification means that we
cannot optimize the generator node parameters, as we illustrate in
Figure 6, we are still able to represent a very wide range of materials.
Moreover, this avoids implementing a large set of generators that
are computationally expensive to evaluate, predict and optimize. In
the following, we detail the filter nodes supported by DiffMat.

5.3 Atomic Filter Nodes

Atomic filter nodes are the basic building blocks of any procedural
material design tool. In other words, any graph when decomposed
into its core operations, will consist of only these nodes. These
include standard image processing operators such as blur, warp,
blend, distance, gradient map, and color adjustments, but also pro-
cedural modeling-specific operations like Fx-map (Sec. 5.5) and
pixel-processor (Sec. 5.6). DiffMat provides implementations of all
21 atomic filter nodes supported by Substance Designer and ac-
curately reproduces their behavior. As noted earlier, we turn the
atomic generator nodes (Bitmap, SVG, and Text) into precomputed
inputs. A full list of implemented atomic nodes can be found in the
supplemental material.

5.4 Non-atomic Filter Nodes

Non-atomic filter nodes are pre-made graph instances (compound
nodes) that are constructed using atomic filter nodes and are de-
signed to reproduce specific visual effects and enable high-level
artistic control over material appearance. Substance Designer has
more than 150 non-atomic filter nodes. DiffMat implements the
110 most frequently used non-atomic filter nodes in the Substance
Source dataset and is thus able to represent a significant portion
of these graphs. We fuse inefficient calls of atomic filter nodes in
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these pre-made graphs to improve their computational efficiency in
DiffMat’s implementation. A full list of DiffMat’s non-atomic filter
nodes can be found in the supplemental material.

5.5 Fx-maps and Tiling

The Fx-map is a node unique to Substance Designer that allows
users to subdivide and replicate an image repeatedly while applying
rotations, translations and blending. It is commonly used to create
repetitive or fractal patterns, such as tiles, stripes, and various types
of noises. As with other generator nodes, we do not implement a
full-fledged Fx-map in DiffMat, though it is feasible in future work.
Nevertheless, we implement a limited version of the node that can
represent all “tiling”-based non-atomic nodes. Our implementation
allows users to tile a single input image in a specified manner to
form an output image that is continuous both inside and over its
edges. It also supports stochastic generation by allowing variations
in position, rotation, scaling and blending opacity.

5.6  Value/Pixel Processor and Exposed Parameters

The value-processor and pixel-processor allow users to define custom
mathematical functions using predefined mathematical operators.
While the value-processor applies a function to a single value, the
pixel-processor applies the function to every input image pixel.

The value-processor is used to create exposed parameters for Sub-
stance Designer graphs. Production-grade materials graphs can have
hundreds of node parameters, making it challenging for users to ex-
plore the space of material variations from the graph. To make this
process more intuitive, many graphs have exposed parameters—a
smaller set of artist-defined parameters, that give users high-level
control over the material’s variations. These exposed parameters
are internally converted to individual node parameters using value-
processor functions. For example, an “age” parameter in a wood
graph can control the number of annual rings and be used to set all
ring-related node parameters using value-processors.

The pixel-processor provides shader-like control to manipulate
pixel values and can create advanced effects like half-toning. Most
pixel-processors in Substance Source use pre-defined, deterministic
mathematical operators. Hence, we implement the pixel-processor
as a fixed node with non-optimizable parameters (similarly for the
value-processor).

5.7 Automatic Graph Translation

Production-grade graphs that produce complex, real-world mate-
rials can easily have tens to hundreds of nodes with hundreds to
thousands of parameters (see Supplementary Material Tab. 1 for
details of a set of Substance graphs). Moreover, while some graphs
have well-organized hierarchies and proper use of sub-graphs, we
found that this is often not the case. This makes the manual conver-
sion of a given procedural graph to PyTorch code cumbersome and
error-prone. Instead, DiffMat implements an automatic graph trans-
lation tool that makes this process effortless and scales to large-scale
graphs.

A Substance Designer document encodes the procedural material
graph and its associated exposed parameters in XML. The DiffMat
translator parses and analyzes this XML document and generates



Python programs that replicate the functionality of the graph. This
translation is performed as follows:

(1) Graph replication. The translator first detects and stores the
default values of all exposed parameters of the input graph. It then
replicates the whole graph in DiffMat by using the corresponding
PyTorch operations with the same connectivity. As described in
Sec. 5.2, graph nodes without input connections are regarded as
generators and converted to precomputed input bitmaps in the
forward evaluation routine.

(2) Node parameter conversion. For every filter node, the trans-
lator interprets and converts its parameters according to a series of
node type-specific rules. If a node parameter is defined as a dynamic
function of one or more exposed parameters, its initial value is set by
constructing and evaluating its value-processor using the pre-stored
exposed parameters.

(3) Data flow analysis. After constructing the graph structure, the
translator examines node contributions to the graph outputs to elim-
inate redundancy. While a graph may produce many material maps,
we only consider four (albedo, normals, roughness, and metallicity).
Therefore, the translator runs a backward breadth-first search (BFS)
and a forward BFS to identify the largest subgraph that is accessible
from these four output nodes and trims all unused nodes.

(4) Program generation. Finally, the translator performs topolog-
ical sorting on the final graph and generates a node sequence con-
sistent with data dependency. Based on this sequence, the translator
organizes the results from previous steps and outputs a complete
Python program.

For node graphs that use unimplemented filter nodes, the transla-
tor automatically replaces them with passthrough nodes. To enable
effortless high-level post-editing, we offer the option to retain the
exposed parameters during graph translation. In the subsequent op-
timization, users can choose to optimize either exposed parameters
alone or exposed parameters plus the rest of node parameters not
directly tied to the exposed parameters. If users wish to explore a
larger design space, they can further choose to remove the value-
processors prescribed by the exposed parameters and optimize all
node parameters freely. This is often useful if users wish to create
their custom exposed parameters after the optimization.

In Supplementary Material, we thoroughly evaluate DiffMat per-
formance in terms of graph translation, SVBRDF reproduction ac-
curacy (comparing to the reference results computed by Substance
Designer), computational efficiency, and memory cost.

6 RESULTS

We analyze the performance of MATch on a wide set of synthetic im-
ages and captured real-world photographs. All results are computed
from a single 512 X 512 input photograph captured (or rendered)
under flash illumination. For all these results, we use “Default” to
denote rendering of materials that created by the out-of-the-box,
originally-designed node parameters of a graph, and “Target” to de-
note the target image whose appearance we would like to reproduce.
Unless otherwise specified, all these results predicted/optimized
against all the filter node parameters of the graph. We encourage
readers to zoom into the figures to evaluate the visual quality of
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Default Target Our
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Optimiza-  Optimiza- Hu et al.
tion from tion from 2019
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Fig. 5. Optimization and prediction results for synthetic materials. For a
majority of synthetic examples, optimization alone is sufficient to reproduce
the target materials. Compared to Hu et al. [2019] (our reimplementation on
our data and BRDF model), our network prediction produces more accurate
color, fine features, and glossiness with the help of rendering loss. The
prediction result is further improved by the optimization step to precisely
match the target material.

our results. We also include more results and experiments in the
supplementary material and video.

6.1 Material Capture from Synthetic Images

We first examine our approach on synthetic photographs. In this
experiment, we manually sample the parameters of a graph to cre-
ate new materials. We then render these materials and use the
images to evaluate our direct prediction networks and the MATch
optimization-based approach. In Figure 5, we show optimization
only, prediction only, and prediction plus optimization results for
5 different material graphs. For a majority of examples, optimiza-
tion alone (i.e., starting from the default parameters) is sufficient
to closely reproduce target appearances. Direct prediction tends
to coarsely match the target appearance, though in many cases
misses the details that optimization is able to recover. That said,
for challenging examples such as the black bricks, optimization
from the predicted parameters improves reproduction quality over
optimization from the default parameters. We emphasize that dur-
ing both optimization and prediction, we deliberately use different
noise patterns between the rendered images. This can be observed
in the details of the rendered images. Yet, our style-based loss suc-
cessfully handles this misalignment between the basic structures to
accurately reproduce the overall material appearance. In the supple-
mentary material, we visualize additional synthetic examples and
the optimized SVBRDF maps.

ACM Trans. Graph., Vol. 39, No. 6, Article 196. Publication date: December 2020.



196:10 « Shi, L. et al

[ Left: Default material ] Middle: Optimized material [ Right: Target photograph * : Unmatched material types

Granite table Stone pillar

Fig. 6. Optimization results for real-world materials. Top: At each row, we show multiple real-world materials matched by one single procedural material
graph using the same default initial parameters. The * symbol marks the examples that are optimized against a target material of a different material type.
Middle: Additional examples on unmatched material and graphs. Bottom: Additional examples on matched material and graphs.
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Optimized Target
from prediction
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from default

Fig. 7. Prediction plus optimization results for real-world materials. Left: Speed of convergence comparison between optimizing default and predicted node
parameters. Right: Comparison of optimization results on challenging target materials . Optimizing from the default parameters stuck in the local minimum,
while optimizing from the predicted parameters produces a significantly closer reproduction.

6.2 Material Capture from Real Data

Optimization for Real-world Materials. In Figure 6, we evaluate
MATch on 30 real photographs with 27 images captured by us and 3
images from the dataset of Aittala et al. [2016]. In the supplementary
material, we visualize additional real-world examples (44 in total)
and the optimized SVBRDF maps.

We use the prediction network to pick the material graphs , but
use the default parameters as initialization to demonstrate the capa-
bility of optimization. We note that being able to reproduce high-
quality materials using just optimization allows users to quickly try
out manually picked material graphs and skip the time-consuming
network training step. Figure 6 (top) shows that we are able to repro-
duce a wide variety of materials starting from the same graph and
initialization. This indicates the diversity of materials that can be
generated by manipulating all the parameters in large-scale graphs,
as well as the ability of our optimization-based approach to converge
to a good solution.

In Figure 6 (middle), we show that when the chosen graphs are
designed for a material type quite different from the targets, they
are often expressive enough to represent the target materials (and
the ability of the optimization to robustly discover these matches).

Prediction plus Optimization for Real-world Materials. While we
find that optimization alone is sufficient for many examples, the
prediction network generally provides a better initial guess of the
node parameters, which accelerates the convergence of optimization
and improves the final results. We demonstrate both these cases in
Figure 7 on real-world materials. On average, the predicted parame-
ters reduce the required iterations for convergence by more than
half.

6.3 Comparisons with Previous Work

Comparison to Hu et al. In Figure 5 and Figure 9, we compare our
results to the state-of-the-art procedural material capture method of
Hu et al. [2019]. Their original work uses a different set of material

graphs, assumes Lambertian BRDFs captured under natural illumi-
nation, and only predicts the exposed parameters of the graph. For
an apples-to-apples comparison, we re-trained their AlexNet-based
models on our data (graphs, material model, and illumination). Fol-
low their paper, we restrict their prediction to the exposed graph
parameters (and all parameters if no exposed parameters are de-
fined).

As can be seen on the synthetic tests in Figure 5, our direct pre-
diction is more accurate than the result from Hu et al., despite that
our parameter prediction networks are more compact than theirs.
We attribute these improvements to the use of the image-space per-
ceptual loss in training the prediction networks, which is possible
only because of our differentiable material graphs. Moreover, our
optimization-based approach further improves over our direct pre-
diction results, resulting in a significant gap in performance over
their results.

These results are also consistent with the real-world captures
shown in Figure 9. Here, we demonstrate that different variants of
our optimization scheme, where we optimize different combinations
of full or exposed parameters all outperform Hu et al. (see Sec. 6.4
for more discussions). During experimentation, we also find their
network has a hard time disambiguating correlations between pa-
rameters due to the lack of knowledge of the material graph. For
example, a graph consists of two exposed parameters both control
the color of the diffuse albedo (one exposed parameter for RGB
manipulation, the other for HSV manipulation), their network can
get conflated, resulting in poor color reproduction (see Figure 9
red insets). This forces users to manually clean up the exposed pa-
rameters and prevents expanding their network to full parameter
prediction for a majority of the procedural graphs.

Comparison with single-image per-pixel capture. In Figure 8, we
compare our method to the state-of-the-art deep learning-based
single-image SVBRDF capture methods of Deschaintre et al. [2018]
(based on direct SVBRDF prediction) and Gao et al. [2019] (based on
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Deschaintre et al. Ours Gao et al. Deschaintre et al.
2018 2019 2018

Gao et al.
2019

Ours

Rendered
(Side light)

Target Rendered
(Top light)

Albedo Normal

Metallic

Roughness

Fig. 8. Comparison of our method to single-image per-pixel SVBRDF capture methods of Deschaintre et al. [2018] and Gao et al. [2019] illustrate the key
difference to our method. While the per-pixel methods are able to produce texture patterns more closely aligned to the exact target photo, they suffer from
various artifacts such as blurring and color fringing. Our method, predicting node graph parameters instead of pixels directly, is much more robust to these
problems, though of course at the cost of not matching the target texture patterns exactly.

optimization in an autoencoder latent space). These methods predict
the per-pixel material maps that are well aligned to the target photo.
However, because of the unconstrained nature of the problem, they
suffer from noticeable artifacts such as blurring, color fringing, and
degraded fidelity for novel light positions. These methods are also
limited to the resolution and appearance of these results. By captur-
ing into a procedural model, our method produces higher-quality
materials that can be edited, tiled, and synthesized at arbitrary reso-
lutions. This does come at the cost of not matching the target texture
patterns exactly, but this is often not important in many material
capture scenarios where users would want to capture the general
appearance of the material, but not the exact structure of the input
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image. In conclusion, it is clear that the task of procedural material
capture has (and will always have) its own trade-offs compared to
the per-pixel material capture.

6.4 Additional Applications

Material Editing. A key advantage of procedural materials is their
editability. Starting with the optimized results, artists can manually
fine-tune the parameters to reproduce the exact material appearance
they would like or sample around the optimized parameters to
generate a family of similar textures. We demonstrate this second
application in Figure 11, where we adjusted the node parameters
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Default Target Rendered Rendered Rendered Rendered Albedo Normal Rendered Rendered Albedo Normal
(Exposed (Exposed (All node (Side light) Rough- Metallic  (Exposed (Side light) Rough- Metallic
parameters ~ parameters  parameters) ness parameters ness

only) preserved) only)
Ours Hu et al. 2019

[J Prediction by Hu et al.’s network when the graph consists of highly-correlated exposed parameters (color here).

Fig. 9. Comparison of our method to Hu et al. [2019] network prediction (without non-differentiable style transfer step) for real-world captured materials. For
our results, we show optimization over exposed parameter only, exposed parameters with the rest of independent node parameters, and all node parameters.
Our method overall produces a better match through optimizing a significantly larger design space and iteratively update the appearance to match the target.
In contrast, the prediction by Hu et al. network is one-shot and can’t not be iterative refined through back-propagation.

of the optimized materials to create four material variants for each
example.

As mentioned before, some material graphs have exposed pa-
rameters that are specified by the artists who created these graphs.
However, not every graph has exposed parameters, and as noted be-
fore optimizing only the exposed parameters can severely constrain
the expressiveness of the graph. That said, exposed parameters can
represent user-friendly controls over a graph’s output. In Figure 9,
we demonstrate the result of optimizing the exposed parameters of
a graph to match a target image. In particular, we demonstrate that
a hybrid approach where we optimize the exposed parameters and
any parameters independent of the exposed parameters—called ex-
posed parameters preserved—produces results visually comparable
to full parameter optimization, while allowing for easy editability
via the exposed parameters.

High-resolution Material Synthesis. Procedural materials are in-
dependent of resolution: once the parameters are optimized at a
base resolution (512 X 512 in our results), we can synthesize high-
resolution material maps using the same set of node parameters. In
Figure 12, we picked 4 optimized, detail-rich materials and rendered
their appearance at a resolution of 2048 X 2048 pixel (figures are
cropped to fit the space). At higher resolutions, fine-grain details
are revealed without loss of image sharpness. Such super-sampling

would be very difficult to achieve with per-pixel material capture
methods.

6.5 Limitations

MATch does not optimize the graph structure, thus its success ul-
timately relies on the expressiveness of the chosen graph. Conse-
quently, it performs poorly or fails when unmodelled patterns are
present in the input or the complexity of the input pattern exceeds
the granularity of the deployed filters. For example, the optimized
wood example in Figure 6 does not precisely reproduce the dot-like
grooves in the normal map because the normal sub-graph cannot
achieve this granularity, instead a similar visual effect is approxi-
mated through a noisy roughness map. A very similar example can
also be found in Figure 10 second row. Figure 10 first row visualizes
a more exaggerated example, where the substrate behind the input
metal grate is completely unmodelled, and the optimization fails.
MATch currently does not optimize the generator nodes, thus
unmatched input noise patterns result in poor reproduction. The
optimized “Metal gritty” in Figure 6 is an example of this, where
the ferrofluid pattern persists after the optimization despite the
doughnut-like color gradient gets removed. More subtle examples
can be found in “Amber leather” and “Red wall” of Figure 6. Figure 10
(third row) demonstrates a more exaggerated example, where a tile
graph is used to reproduce a bed sheet with scattered square patterns.
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Albedo Normal
Roughness Metallic

Target Default Optimized

Fig. 10. Failure cases due to unmodeled objects (substrate behind the metal
grate), limited expressiveness of overly simple graph structures (subgraphs
that produce metallic of the metal grate, normal of the scratched metal,
and the bed sheet example), and inability to optimize the generator nodes
to match the input pattern (albedo of the scratched metal, the bed sheet
example).

Target Optimized ———  Edited

Fig. 11. Material editing. In each row, we show an optimized real-world
material and variants generated by manually adjusting the optimized node
parameters. Note that all the variants are generated from the same group
of noise patterns, yet display a wide range of appearances.

Because the tile pattern is an input of the generator node, MATch
can’t relocate individual tiles, which remain visible in the final result.

Finally, MATch currently does not support full-fledged Fx-map
Substance node and derived nodes such as tile generator and splat-
ter. Thus, it is not able to convert graphs that use these nodes as
intermediate nodes (only as generators). This makes conversion of
certain types of materials such as grass difficult. This is a limitation
of our current implementation, which does not occur in black-box
approaches (e.g. Hu et al. [2019]) since differentiability is not a
requirement.
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In the future, the aforementioned shortcomings can be improved
with further development of DiffMat and combining graph structure
search with parameter optimization.

7 CONCLUSION AND FUTURE WORK

We have introduced MATch, a framework for matching the out-
put appearance of a procedural material graph with respect to a
user-input material image. MATch is enabled by our differentiable li-
brary DiffMat, which provides differentiable routines for procedural
material building blocks (nodes) and automatic graph translation.
Our framework allows direct optimization of material parameters
using stochastic gradient descent methods, and further uses a neural
network to select an appropriate procedural graph and initialize ap-
propriate node parameters to accelerate and improve optimization.
We have validated MATch’s effectiveness on a large collection of
synthetic and real-world materials.

In the future, we would like to further expand the capability of
MATch. In terms of system input, we would like to go beyond the as-
sumption of a single flat sample, and capture materials from images
of curved objects, or with multiple materials in the image. In terms
of material models, we would like to handle more complex mate-
rial appearances including anisotropic BRDFs and spatially-varying
specular highlights caused by wave optics based effects (i.e. glints
due to diffraction and inference). In terms of DiffMat, we would like
to fully support Fx-map and derived nodes such as tile generator
and splatter; this will enable the inclusion of generator nodes into
the optimization loop and also significantly expand the number of
convertible material graphs. Finally, in this work we assumed that
the material graph is given; an interesting direction is to synthesize
the material graph from scratch for a set of user captured material
photographs (ideally of one specific type of material). This is similar
to the problem of neural architecture search (NAS) in deep learn-
ing that aims to automate the design of network architectures to
maximize performance while minimizing computational cost. This
will expand the space of material graphs that can be optimized and
enable more intelligent and automatic procedural material capture.
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